Modeling Framework for Control of Bacterial Nitrification in Aquaponics-Inspired Hydroponics System: A Masters Thesis in Electrical Engineering at Colorado School of Mines

Clayton R. Thurmer Advised By: Kevin L. Moore, Dean College of Engineering and Computational Science Aquaponics Fest, Longmont, CO August 10, 2014

Outline

- About Me
- Intro to Control Engineering
- Thesis Project Overview:
 - o Motivation
 - Goals
 - Modeling
 - o Lab Design
 - Startup and Nominal Operation
 - o Control Design
 - o **Experiment**

About Me

• BA CS 12/2008 • Oberlin College (OH) • Software Engineer • Aerospace/Defense • MS EE 8/2014 • CSM • K-12 Outreach Aquaponics project since 6/2013 Hobbies: hiking, skiing, (soil) gardening

Intro to Control Systems

Feedback control
 Dynamics

 PID

 MIMO Systems

 multiloop
 state-space

10 12 14 16 18

Thesis Project Overview

- Motivation
- Goals
- Modeling
- Lab Design
- Startup and Nominal Operation
- Control Design
- Experiment

Motivation

- Water/Energy tradeoffs of Aquaponic Systems not well understood:
 - Assumed reduced water use of Aquaponics vs. traditional Aquaculture/Horticulture
 - Colorado Water Deliveries:
 - 86% Agriculture
 - 3% Recreation/Fisheries
- Control system designs absent in literature
 System level analysis absent in literature

Goals

- Increase the efficiency of aquaponic systems through use of advanced control techniques.
 Efficiency = Outputs/Inputs
 - aggregation of terms using prices per unit
 For controlled system:
 - o Efficiency = Outputs/"Control Effort"

Approach

- Modeling
 - o identify key parameters & interactions
 - o define inputs and outputs
- Lab Design
 - o provide experimental data
- Experiment
 - inform/verify model
 - proof-of-concept control design
 - efficiency analysis

Modeling

Subsystem approach:
 Biological

- Aquatic Life (Fish)
- Bacteria
- Plants
- Chemical
 - pH
- Thermal (non-aqueous environment)
 - Fluidics (aqueous environment)

Modeling (revised due to regulation)

- Subsystem approach:
 Biological
 - Bacteria
 - Plants
 - o Chemical
 - pH
 - Aquatic Life Simulation
 - Thermal (non-aqueous environment)
 Fluidics (aqueous environment)

Plants

Inputs: Micro/Macro Nutrients H,C,O from air & water • PAR (light) • Processes: Photosynthesis 0 • Cellular Respiration Nitrogen Assimilation Environmental Parameters

Photosynthesis & Cellular Respiration

Photosynthesis: $6CO_2(g) + 6H_2O + PAR \rightarrow C_6H_{12}O_6 + 6O_2(g)$ Cellular Respiration:

 $C_6H_{12}O_6 + 6O_2(aq) \rightarrow 6CO_2 + 6H_2O + Energy$

Nitrogen Assimilation (Ionic Balance)

 Plant must maintain a neutral charge
 In order to absorb negatively charged Nitrate, the plant will either:

 absorb positively charged nutrient ion (Calcium)
 release negatively charged ion (Bicarbonate)

Plant Life Model

Chemical Inputs

Bacteria

Nitrosomona: $2NH_4^+ + 3O_2 \rightarrow$ $2NO_2^- + 2H_2O + 4H^+$

Nitrobacter and Nitrospira:

 $2NO_2^- + 1O_2 \rightarrow 2NO_3^-$

Hydrogen ions released by Nitrosomona cause a drop in pH. Buffer chemical needed to maintain pH at desirable level:

Table 2.4: Considerations for pH Set-Point Selection

Measurement	Organism	Minimum	Nominal	Maximum
	Nitrosomonas[23]	6.0	7.8-8.0[24]	9.0
	Nitrobacter[24]		7.3-7.5	
$_{\mathrm{pH}}$	Fish[2]		6.5-8.0	
	Plants[2]	5.0	5.0-6.6[20] (spinach)	7.0
	Combined System[2]	6.8	6.8-7.0	7.0

 $KHCO_3 + H^+ \rightarrow H_2O + CO_2 + K^+$

Aquatic Life Simulation

Simulate aquatic life with manual addition of ammonia (chemical form of fish waste). Same idea as "Fishless Cycling" method.

Table 2.5: Maximum Nitrogen Levels for Fish Health

Nitrogen Form	Maximum Level (For Fish Health)				
Total Ammonia $(NH_{-} + NH_{-})$	W. Temp.	$68^{\circ} \mathrm{F}$	75° F	82° F	
$\begin{bmatrix} 10tai \text{ Animonia} (10113 \pm 1011_4) \end{bmatrix}$	pH = 7.0	0.4 ppm	0.52 ppm	0.7 ppm	
Nitrite (NO_2^-)	10 ppm				
Nitrate (NO_3^-)	N/A (100 ppm desirable for plants)				

Thermal (non-aqueous parameters)

Thermal system designed to maintain desirable **nonaqueous** parameters (may require external energy):

Table 2.6: Optimal Non-aqueous set-points for Hydroponic Spinach Production

Measurement	Set-point
Air Tomporaturo	$75^{\circ} \mathrm{F} \mathrm{day}$
All Temperature	65° F night
Relative Humidity	$50\% \;(\max \; 70\%)$
Carbon Diovida	1000-1500 ppm with light
Carbon Dioxide	390 ppm (ambient) without light
Light	$17-22 \ mol/m^2/d$

Fluidics (aqueous parameters)

Fluidics system designed to maintain desirable aqueous parameters (may require external energy and water):

Table 2.7: Considerations for Water Temperature Set-Point Selection

Measurement	Organism	Minimum	Nominal	Maximum
	Nitrosomonas[23]	68° F	77 86° E[94]	86° F
	Nitrobacter[24]	$32 \circ F$	77-00 F[24]	120° F
Water Temperature	Tilapia[2]	60° F	74-80° F	95° F
1600	Trout[2]	38°	55-65°	68°
	Goldfish[2]	45° F	$65-75^{\circ} { m F}$	$90^{\circ} \mathrm{F}$
	Spinach[20]		77° F	
:	Combined System	Highly de	pendent on (fis	sh) species

Table 2.8: Considerations for Dissolved Oxygen Set-Point Selection

Measurement	Organism	Minimum	Nominal	Maximum
	Nitrosomonas[24] Nitrobacter[24]	2 ppm	80% saturation	N/A
Dissolved Oxygen	Fish[2]	3 ppm (stress) 2 ppm (death)	$6 \mathrm{ppm}$	N/A
	Spinach[20]	3 ppm	7 ppm	N/A
	Combined System	3 ppm	7 ppm	N/A

Control Objectives

1. Maintain Desirable Set-points a. Possible death of organisms if parameters fall out of range 2. Maximize/Increase Efficiency a. Explore energy/water tradeoffs 3. Secondary objectives: a. reliability b. ease of use c. preservation of equipment

Abstract Model

 Subsystem approach to controlling parameters Measure "Control Effort" used for variable manipulation

Lab Design

Considerations:

- 1. Physical Design
- 2. Species Selection
- 3. Actuators
- 4. Sensors
- 5. Integration
- 6. Maintenance
- 7. Source of materials

Constraints:

- 1. Small space
- 2. Shared space
- 3. No natural light
- 4. Undefined ambient conditions
- 5. Limited budget and timeframe

Physical Design

Japan Aquaponics Micro System Design:

- IKEA shelving units
- Hydroton media bed
- Siphon drain
- Continuous pump
- manual bypass valve
 Modified to include:
 - Mylar enclosure
 - Artificial lighting
 - Ventilation fan

Actuators

Table 3.1: Actuators Used During Experimental Iterations

Dum	Actuator	Power Rating	Manipulated Variable
Pump	Hydrofarm AAPW160	9.5 W	Flow
Light	Hydrofarm FLCDG125D	125 W	PAR
Water Heater	Aqueon 13"	$150 { m W}$	T_W
Aerator	Petco AC-9904	$5 \mathrm{W}$	DO
Fan	Minuteman F-11	Unspecified	T_A (attempted)
Failsafe Aerator	Penn-Plax Silent Air B11	N/A (2x "D" Cell Batteries)	DO (failsafe)

Considerations:

- Light: Color Temperature, Lux to PAR conversion
- Heater and Aerator: Saturation
- Pump: Flow rate, siphon actuation

Sensors (non-aqueous)

Table 3.5: Sensors for Exogenous Inputs

System Variable	Description	Sensor	Interface	Max Sample Rate
T_A	Air Temperature	TMP36	Analog	N/A
PAR	Light	TSL2561	$I^{2}C$	400 ms
CO_2	Carbon Dioxide	MG-811	Analog	N/A
Hu	Humidity	HIH-4030	Analog	N/A
ρ	Atmospheric Pressure	MPL115A2	$I^{2}C$	$8 \mathrm{ms}$

Considerations:
Light: Spectral sensitivity (PAR)
CO2: sourcing

Sensors (aqueous)

 Table 3.6: Sensors for Intermediate Measurements

System Variable	Description	Sensor	Interface	Max Sample Rate
NH_3	Ammonia	API Freshwater Master Test Kit	Manual	1 day
NO_2^-	Nitrite	API Freshwater Master Test Kit	Manual	1 day
NO_3^-	Nitrate	API Freshwater Master Test Kit	Manual	1 day
pH	pH	Atlas Scientific pH sensor	Serial	$378 \mathrm{ms}$
EC	Salinity (Electrical Conductivity)	Atlas Scientific Conductivity Sensor	Serial	$1000 \mathrm{ms}$
DO	Dissolved Oxygen	Atlas Scientific Dissolved Oxygen Sensor	Serial	$650 \mathrm{ms}$
ORP	Oxygen Reduction Potential	Atlas Scientific ORP Sensor	Serial	320 ms
Flow	Flow	TurboFlow-226000	Serial	200 ms
T_W	Water Temperature	ENV-TMP	Analog	N/A

Considerations:

- Manual Nitrogen measurements
- Atlas Scientific sensors with serial interface boards
- Flow sensor pre-filter clogged

Sensors (outputs, control effort)

Table 3.7: Sensors for Outputs

System Variable	Description	Sensor	Interface	Max Sample Rate
B_P	Plant Biomass	Scale	Manual	17 days (harvest iteration)
$NH_3(in)$	Powdered Ammonia	0.25 tsp	Manual	1 day
$CaHCO_3$	pH buffer	0.5 tsp	Manual	1 day
W_{in}	Water In	1 G	Manual	1 day
E	Electric Energy	Kill-a-Watt	XBEE	2 s

Considerations:

- (Lack of) High rate plant mass sample
- Manual additives
- Kill-a-Watt integration

Integration

Arduino Mega 2560 Real Time Clock Logic Level Converter Serial Multiplexers SainSmart 8 channel 5V relay

Tweet-a-Watt mod

Species Selection

Table 3.2: Thermal Set Points Versus Measured Outputs

Set Point	Measured
$4-4.8 \ mol/day$	$6.9 \ mol/day$
71-83 $\mu mol/s$	$140 \ \mu mol/s$
75° F	80° F
$65^{\circ} \mathrm{F}$	75° F
	$\begin{array}{c} {\rm Set \ Point} \\ 4{\text -}4.8 \ mol/day \\ \overline{71{\text -}83 \ \mu mol/s} \\ \overline{75^{\circ} \ F} \\ \overline{65^{\circ} \ F} \end{array}$

- Spinach and Goldfish intended
- Regulations -> No Goldfish!
- Crawfish possible (invertebrates)
 - Red claw too big
- Too hot for spinach -> "warm weather" crops: Pak Choi, Basil, Mesclun

Lab photos

Startup and Nominal Operation

2/24	3/3	3/10	3/17	3/24	3/31	4/7	4/14	4/21	4/28	5/5	
Cycli	ng		Mes	clun (4	1 <u>wk</u>)		Mes	clun		W.	
(นทรเ	uccess	sful)	Pak (Choi (6	5 <u>wk</u>)						
			Basil	(6 wk)						

Model Verification and Control

Manual additives for chemical control

 Combined "Biochemical" model

 Implementation specific models

 Thermal
 Fluidics

 "Nitrifying Hydroponics" model

Manual Control

1. pH Buffer 2. Water Level 3. Aquatic life simulation Note: difficulty manipulating small scale system

Thermal Model

Aeration Control Data

• Before cycling. • DO set point realized • ~75 deg F. Aeration duty: o **75%**

System Model

Thermal System Ignored

Simplified "Top-level" Model $P_{Bp}(\Sigma B_P)$ Efficiency = $\overline{P_{W}(\Sigma W_{in}) + P_{NH3}(\Sigma NH_{3}(in))} + P_{CaHCO3}(\Sigma CaHCO_{3}) + P_{E}(\Sigma E)$ Ε_T PAR | Hu | T_A CO₂ ρ —1/0_{Pump}→ 1 ·B⊳ -NH₃ (in)→ **Controlled Nitrifying** 80^o F -SP_{Tw}--CaHCO₃→ Hydroponics Model -W_{in}—→ 80% -SP_{DO}-7 ppm %_{duty} NO₂ pН T_W NH₃ NO₃⁻ EC DO (aq)

Experiment

- Motivation:
 - "negative" relationship between DO and Tw observed
- Design:
 - Grow mesclun at different water temperatures
 - Seed to harvest
- Outcomes:
 - o impact on DO?
 - impact on efficiency?

Results

Output	80° F Iteration	70° F Iteration	% Change
B_P	8 oz.	6 oz.	-25%
W_{in}	11 G	4 G	-67%
$NH_3(in)$	2.5 tsp	2.75 tsp	+10%
$CaHCO_3$	4.5 tsp	8 tsp	+44%
E	73.44 kWh	48.14 kWh	-34%

Set-point Tw	80 deg F	70 deg F
Water Temp.	80.3 deg F	71.0 deg F
Set-point DO	80% saturation	80% saturation
DO	30.3% saturation	38.5% saturation
%duty (air)	100%	100%

Analysis

$P_{Bp}(\Sigma B_P)$

 $Efficiency = \frac{P_{BP}(\Sigma DP)}{P_{W}(\Sigma W_{in}) + P_{NH3}(\Sigma NH_{3}(in)) + P_{CaHCO3}(\Sigma CaHCO_{3}) + P_{E}(\Sigma E)}$

Output	80° F Iteration	70° F Iteration	% Change
B_P	8 oz.	6 oz.	-25%
W_{in}	11 G	4 G	-67%
$NH_3(in)$	2.5 tsp	2.75 tsp	+10%
$CaHCO_3$	4.5 tsp	8 tsp	+44%
E	73.44 kWh	48.14 kWh	-34%

Output	Stream Type	Description	Price/Unit
B_P	Output	Plant Mass	\$3/oz.
W_{in}	Input	Water In	\$1/G
$NH_3(in)$	Input	Ammonia In	\$0.35/tsp
$CaHCO_3$	Input	pH Buffer	\$0.12/tsp
E	Input	Energy Consumed	\$0.10/kWh[16]

Efficiency(80) = 1.214Efficiency(70) = 1.677

Conclusions

1. Efficiency increased at lower temperature

- a. less energy used (by heater)
- b. less water used (evaporation and absorption)
- c. less plant mass produced
- 2. Nitrification increased
 - a. more additives used
 - b. higher dissolved Oxygen
- 3. Feedback of DO not effective
 - a. saturation
 - i. exogenous parameters (salinity?)

Future Directions

1. Reduce additive quantities: a. Sub-optimal nitrification rates i. saturation of Nitrate 2. Exploration of thermal subsystem a. PAR and CO2 coupling 3. High rate plant sampling desired a. image processing b. IR reflectometry

Summary

 Aquaponic system model developed: Subsystem approach Lab designed Control system designed • Experiment: • Water Temperature changed Efficiency Analysed

Clayton Thurmer clayton.thurmer@gmail.com